

FIGURE 1 The modeling process

Linear Models

EXAMPLE 1
(a) As dry air moves upward, it expands and cools. If the ground temperature is $20^{\circ} \mathrm{C}$ and the temperature at a height of 1 km is $10^{\circ} \mathrm{C}$, express the temperature T (in ${ }^{\circ} \mathrm{C}$) as a function of the height h (in kilometers), assuming that a linear model is appropriate.
(b) Draw the graph of the function in part (a). What does the slope represent?
(c) What is the temperature at a height of 2.5 km ?

EXAMPLE 2 Table 1 lists the average carbon dioxide level in the atmosphere, measured in parts per million at Maund Loa Observatory from 1980 to 2008. Use the data in Table 1 tn find a modal for the norton dinvifo laval

Polynomials

A function P is called a polynomial if

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

coefficients, degrees, quadratics, cubics

EXAMPLE 4 A ball is dropped from the upper observation deck of the CN Tower 450 m above the ground, and its height h above the ground is recorded at 1 -second intervatsin Table 2. Find a model to fit the data and use the model to predict the time at which the ball hits the ground.

August 19, 2017

Power Functions
A function of the form $f(x)=x^{a}$, where a is a constant, is called a power function. We consider several cases.

$$
f(x)=5 \quad \text { is a poly }
$$

(i) $a=n$, where n is a positive integer

(ii) $a=1 / n$, where n is a positive integer

$$
f(x)=x^{a}
$$

(a) $f(x)=\sqrt{x}=X^{1 / 2}$
(iii) $a=-1$

(b) $f(x)=\sqrt[3]{x} \quad X^{1 / 3}$.
$f(x)=\frac{1}{x} \quad x>0$

Rational Functions

A rational function f is a ratio of two polynomials:

FIGURE 16

$$
f(x)=\frac{2 x^{4}-x^{2}+1}{x^{2}-4}
$$

Algebraic Functions

A function f is called an algebraic function if it can be constructed using algebraic operations (such as addition, subtraction, multiplication, division, and taking roots) starting with polynomials. Any rational function is automatically an algebraic function. Here are two more examples:

$$
f(x)=\sqrt{x^{2}+1} \quad g(x)=\frac{x^{4}-16 x^{2}}{x+\sqrt{x}}+(x-2) \sqrt[3]{x+1}
$$

(a) $f(x)=x \sqrt{x+3}$

(b) $g(x)=\sqrt[4]{x^{2}-25}$

(c) $h(x)=x^{2 / 3}(x-2)^{2}$

$$
\sin (x+2 \pi)=\sin x \quad \cos (x+2 \pi)=\cos x
$$

Exponential Functions

The exponential functions are the functions of the form $f(x)=a^{x}$.

$$
f(x)=a^{x}
$$

Logarithmic Functions

The logarithmic functions $f(x)=\log _{a} x$, where the base a is a positive constant;

$$
f^{9}(x)=10 \operatorname{Sa}_{9} x
$$

EXAMPLE 5 Classify the following functions as one of the types of functions that we have discussed.
(a) $f(x)=5^{x}$
(b) $g(x)=x^{5}$
(c) $h(x)=\frac{1+x}{1-\sqrt{x}} r$
(d) $u(t)=1-t+5 t^{4}$
1.2: $1,3,4,5,8,11,13,15,17,19,21,27$

